Fission Yeast Mto1 Regulates Diversity of Cytoplasmic Microtubule Organizing Centers
نویسندگان
چکیده
Microtubule nucleation by the γ-tubulin complex occurs primarily at centrosomes, but more diverse types of microtubule organizing centers (MTOCs) also exist, especially in differentiated cells. Mechanisms generating MTOC diversity are poorly understood. Fission yeast Schizosaccharomyces pombe has multiple types of cytoplasmic MTOCs, and these vary through the cell cycle. Cytoplasmic microtubule nucleation in fission yeast depends on a complex of proteins Mto1 and Mto2 (Mto1/2), which localizes to MTOCs and interacts with the γ-tubulin complex. Localization of Mto1 to prospective MTOC sites has been proposed as a key step in γ-tubulin complex recruitment and MTOC formation, but how Mto1 localizes to such sites has not been investigated. Here we identify a short conserved C-terminal sequence in Mto1, termed MASC, important for targeting Mto1 to multiple distinct MTOCs. Different subregions of MASC target Mto1 to different MTOCs, and multimerization of MASC is important for efficient targeting. Mto1 targeting to the cell equator during division depends on direct interaction with unconventional type II myosin Myp2. Targeting to the spindle pole body during mitosis depends on Sid4 and Cdc11, components of the septation initiation network (SIN), but not on other SIN components.
منابع مشابه
Activation of the γ-Tubulin Complex by the Mto1/2 Complex
The multisubunit γ-tubulin complex (γ-TuC) is critical for microtubule nucleation in eukaryotic cells, but it remains unclear how the γ-TuC becomes active specifically at microtubule-organizing centers (MTOCs) and not more broadly throughout the cytoplasm. In the fission yeast Schizosaccharomyces pombe, the proteins Mto1 and Mto2 form the Mto1/2 complex, which interacts with the γ-TuC and recru...
متن کاملFission yeast mto2p regulates microtubule nucleation by the centrosomin-related protein mto1p.
From an insertional mutagenesis screen, we isolated a novel gene, mto2+, involved in microtubule organization in fission yeast. mto2Delta strains are viable but exhibit defects in interphase microtubule nucleation and in formation of the postanaphase microtubule array at the end of mitosis. The mto2Delta defects represent a subset of the defects displayed by cells deleted for mto1+ (also known ...
متن کاملTwo distinct regions of Mto1 are required for normal microtubule nucleation and efficient association with the gamma-tubulin complex in vivo.
Cytoplasmic microtubule nucleation in the fission yeast Schizosaccharomyces pombe involves the interacting proteins Mto1 and Mto2, which are thought to recruit the gamma-tubulin complex (gamma-TuC) to prospective microtubule organizing centres. Mto1 contains a short amino-terminal region (CM1) that is conserved in higher eukaryotic proteins implicated in microtubule organization, centrosome fun...
متن کاملMicrotubule stabilization in vivo by nucleation-incompetent γ-tubulin complex
Although the fission yeast Schizosaccharomyces pombe contains many of the γ-tubulin ring complex (γ-TuRC)-specific proteins of the γ-tubulin complex (γ-TuC), several questions about the organizational state and function of the fission yeast γ-TuC in vivo remain unresolved. Using 3×GFP-tagged γ-TuRC-specific proteins, we show here that γ-TuRC-specific proteins are present at all microtubule orga...
متن کاملMicrotubule-organizing center formation at telomeres induces meiotic telomere clustering
During meiosis, telomeres cluster and promote homologous chromosome pairing. Telomere clustering requires the interaction of telomeres with the nuclear membrane proteins SUN (Sad1/UNC-84) and KASH (Klarsicht/ANC-1/Syne homology). The mechanism by which telomeres gather remains elusive. In this paper, we show that telomere clustering in fission yeast depends on microtubules and the microtubule m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 20 شماره
صفحات -
تاریخ انتشار 2010